Chlorofluorocarbons (CFCs or Freon compounds)

The Freon/CFC Experts
Responsible Party Identification
GIS and Geomatics
Contaminant Hydrogeology
Fate and Transport Modeling
Risk Assessment
Remediation Feasibility Studies
Soil and Groundwater Remediation
Natural Resource Damage Assessment
Water Resources Assessment
Source Water Assessment and Protection
Drinking Water Treatment
Environmental Risk Management
Litigation Support/Expert Witness
Forensic Engineering
Stakeholder/Public Participation
Regulatory Strategy

www.aquilologic.com
Email: info@aquilogic.com
Telephone: +1.714.770.8040

To contact us, or sign up for our newsletter, please scan here.
Properties of Common Chlorofluorocarbons

<table>
<thead>
<tr>
<th>Chlorofluorocarbon</th>
<th>Compound Name</th>
<th>Boiling Point (°C)</th>
<th>Density (g/cm³ at 25°C)</th>
<th>Molecular Weight (g/mol)</th>
<th>Solubility (mg/L at 25°C)</th>
<th>Henry’s Law Constant</th>
<th>Octanol-Water Partition Coef. (log K<sub>ow</sub>)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11 Freon-11</td>
<td>Trichlorofluoromethane</td>
<td>23.8</td>
<td>1.49</td>
<td>137.37</td>
<td>1,100</td>
<td>4.03</td>
<td>2.13</td>
<td>1</td>
</tr>
<tr>
<td>CFC-12 Freon-12</td>
<td>Dichlorodifluoromethane</td>
<td>-29.8</td>
<td>1.31</td>
<td>120.91</td>
<td>280</td>
<td>16.67</td>
<td>1.82</td>
<td>1</td>
</tr>
<tr>
<td>CFC-113 Freon-113</td>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>47.7</td>
<td>1.56</td>
<td>187.38</td>
<td>200</td>
<td>22.03</td>
<td>3.09</td>
<td>2</td>
</tr>
</tbody>
</table>

California Water Quality Criteria and Guidelines

<table>
<thead>
<tr>
<th>Chlorofluorocarbon</th>
<th>Regulatory Limit (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notification Level</td>
</tr>
<tr>
<td>CFC-11</td>
<td>---</td>
</tr>
<tr>
<td>CFC-12</td>
<td>1,000</td>
</tr>
<tr>
<td>CFC-113</td>
<td>---</td>
</tr>
</tbody>
</table>

California Drinking Water Sources and Systems Impacted by Chlorofluorocarbons

<table>
<thead>
<tr>
<th>Compound</th>
<th>Number of Systems</th>
<th>Number of Sources</th>
<th>Maximum Detected Concentration (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freon-11</td>
<td>24</td>
<td>48</td>
<td>244</td>
</tr>
<tr>
<td>Freon-12</td>
<td>52</td>
<td>216</td>
<td>101</td>
</tr>
<tr>
<td>Freon-113</td>
<td>20</td>
<td>30</td>
<td>91</td>
</tr>
</tbody>
</table>

Typical Uses of Chlorofluorocarbons

- **Freon-11 (CFC-11)**
 - Synonym: Trichlorofluoromethane
 - Use: Aerosol spray cans, Solvent, Foam blowing agent

- **Freon-12 (CFC-12)**
 - Synonym: Dichlorodifluoromethane
 - Use: Refrigerators, Air conditioners, Foam blowing agent

- **Freon-113 (CFC-113)**
 - Synonym: Trichlorotrifluoroethane
 - Use: Cleaning solvent for manufacturing processes and electronic components

Anaerobic Biotransformation Pathway of Freon-11

![Anaerobic Biotransformation Pathway](image)

Sources:
5. California Department of Public Health as of November 2011.